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LETTER TO THE EDITOR

Quantum oscillator of quartic anharmonicity
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Received 18 February 1998, in final form 17 April 1998

Abstract. A Taylor series method is derived to construct an analytical solution for the quantum
anharmonic oscillator. The expression presented is found to yield in a rather natural way the
corresponding special result obtained by using perturbation theoretic techniques. Attempts are
made to give a possible physical interpretation for the various terms originating from nonlinear
effects. Numerical results are presented to develop a feeling for their relative importance.

A wide variety of physical phenomena ranging from problems in Newtonian mechanics
to those quantum field theory can be understood and visualized by using the so-called
harmonic oscillator (HO) model. This model describes small oscillations of a system about
the mean position of equilibrium under the action of a linear restoring force. For real
systems, however, one needs to accommodate in the theory the effect of anharmonicity and
go beyond the simple-minded HO model. The Morse potential in molecular physics [1]
serves as a typical example in respect of this. Again, the concept of anharmonic oscillator
finds a potential use in the condensed matter physics [2]. Our interest in this work is to
develop an analytical method for solving the quantum quartic anharmonic oscillator problem
which also plays a role in several areas of physics including the response of nonlinear media
to electromagnetic radiation. We shall see that the merit of this approach is its simplicity.
For example, restricting ourselves to the first-order correction of the anharmonic effect we
could use a few difference equations to obtain a closed form solution of the problem starting
from an assumed Taylor series solution.

The nonlinear equation for the classical anharmonic oscillator with quartic anharmonicity
is given by

Ẍ + ω2X + λX3 = 0 (1)

with ω, the frequency of oscillation andλ, the anharmonic constant. Here the dots denote
differentiation with respect to timet . For X(t) to be bounded one will requireλ to be
positive. Understandably, the cubic nonlinearity in (1) has its origin in theX4(t) term
associated with the corresponding Hamiltonian. The same equation as in (1) can also
describe the quantum oscillator if we demand thatX(t) andẊ(t) are no longer numbers but
become operator-valued functions in the Hilbert space satisfying the equal time commutation
relation. Thus, as opposed to the numerical initial condition of the classical problem, here
one has to deal with a general operator initial condition. This tends to pose some new
complication in constructing a solution for quantum-mechanical anharmonic oscillator.

In all problems of physical interest, the anharmonicity acts only as a small perturbation
over the harmonic motion. We therefore, assume thatλ in (1) is very small compared with
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unity. It should be noted that while the change in the equation of motion or Hamiltonian
may be small, the eventual effect on the perturbation on the motion may be quite significant.
Keeping these in mind we try a Taylor series solution for (1) written as

X(t) = X(0)+ tẊ(0)+ t2

2!
Ẍ(0)+ t3

3!

...

X (0)+ t4

4!

....

X (0)+ · · · . (2)

Admittedly, the chosen solution in (2) will be strictly valid only for sufficiently small values
of t . HereX(0) and Ẋ(0) stand for the operator initial conditions satisfying the canonical
commutation relation [X(0), Ẋ(0)] = i(h̄ = 1 is used throughout the text). From (1) and
(2) we obtain the approximate solution up to the linear power ofλ in the form

X(t) = X(0) cosωt + 1

ω
Ẋ(0) sinωt

− λ

ω2
X3(0)

{
ω2t2

2!
− 4

ω4t4

4!
+ 25

ω6t6

6!
− 208

ω8t8

8!
+ 1849

ω10t10

10!
. . .

}
− λ

ω3
[Ẋ(0)X2(0)+X(0)Ẋ(0)X(0)+X2(0)Ẋ(0)]

×
{
ω3t3

3!
− 8

ω5t5

5!
+ 69

ω7t7

7!
− 616

ω9t9

9!
+ 5537

ω11t11

11!
− · · ·

}
−2λ

ω4
[X(0)Ẋ2(0)+ Ẋ(0)X(0)Ẋ(0)+ Ẋ2(0)X(0)]

×
{
ω4t4

4!
− 11

ω6t6

6!
+ 102

ω8t8

8!
− 922

ω10t10

10!
+ · · ·

}
−6λ

ω5
Ẋ3(0)

{
ω5t5

5!
− 11

ω7t7

7!
+ 102

ω9t9

9!
− 922

ω11t11

11!
+ · · ·

}
. (3)

It is possible to extend the solution for higher power ofλ. Interestingly, the infinite series in
the curly brackets can be expressed in terms of the circular functions by using the difference
equations

tr = (−1)r+1(9tr−1− 6r + 7) (4a)

tr = (−1)r+1(9tr−1− 2r + 3) (4b)

tr = (−1)r+1(9tr−1+ 2r) (4c)

and

tr = (−1)r+1(9tr−1+ 6r) (4d)

the solutions of which are given by

tr = (−1)r+1 1
32[9r + 24r − 1] (5a)

tr = (−1)r+1 1
32[3× 9r + 8r − 3] (5b)

tr = (−1)r+1 1
32[9× 9r − 8r − 9] (5c)

and

tr = (−1)r+1 3
32[9× 9r − 8r − 9] (5d)

respectively.tr is therth term of the infinite series under the curly brackets of equation (4).
For example,t3 = 25 andt4 = −208 under the first curly bracket. We thus have

X(t) = X(0) cosωt + 1

ω
Ẋ(0) sinωt − λ

32ω2
X3(0)[cosωt − cos 3ωt + 12ωt sinωt ]
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+ λ

32ω3
[Ẋ(0)X2(0)+X(0)Ẋ(0)X(0)+X2(0)Ẋ(0)]

×[sin 3ωt − 7 sinωt + 4ωt cosωt ]

− λ

32ω4
[X(0)Ẋ2(0)+ Ẋ(0)X(0)Ẋ(0)+ Ẋ2(0)X(0)]

×[cos 3ωt − cosωt + 4ωt sinωt ]

− λ

32ω5
Ẋ3(0)[sin 3ωt + 9 sinωt − 12ωt cosωt ]. (6)

Two useful checks on the solution in (6) are now in order. For example, if we assume
Ẋ(0) = 0 then the simple-minded perturbation theoretic result of Bhaumik and Dutta-Ray
[3] is reproduced. Further, we can go to the classical limit ifX(0) andẊ(0) commute. In
that case we obtain

x(t) = α cos(t + β)+ λα3[− 3
8t sin(t + β)+ 1

32 cos(3t + 3β)+ 3
8 cos(t + 3β)

− 1
8 cos(t − 3β)+ 1

16 cos(t + β)− 1
16 cos(t − β)] + (7)

where we have introducedX(0) = α cosβ, Ẋ(0) = −α sinβ, ω = 1 and lowercasex(t)
as the classical equivalent of the operatorX(t). A few extra terms have appeared in (7)
in comparison with that of the classical solution (i.e. equation (4.45) of [4]) obtained by
perturbative techniques.

It is clear that the nonlinear contribution to the solution in (6) consists of four parts.
The first part, namely the coefficient ofX3(0), confirms the presence of higher harmonics.
Here only the third harmonic has been generated because our constructed solution is linear
in λ. Had we considered the terms containingλ2 the fifth harmonic would be generated.
A similar physical interpretation may be given for the remaining three parts. It may be
of considerable interest to examine the relative contribution of these parts in producing
the nonlinear effects. In figure 1 we plot the values of such contributions (after making
dimensionless) as a function of the dimensionless quantityωt . For small values ofωt the
contributions for all the four parts are comparable. However, for large values ofωt the
contribution of coefficient ofX3(0) dominates over the contribution made by the remaining
three parts. This is because the denominators of those three parts increase faster compared
with the denominator of the first one. Thus, the leading contribution of the nonlinear effects
will come from the coefficients ofX3(0) for moderately large (as long as solution (2)
permits) values ofωt . Curve (a) is oscillatory and its amplitude increases rapidly asωt

increases. The reason for this may be attributed to the secular termωt sinωt present in the
coefficient ofX3(0).

It is interesting to note that we can remove the secular term from the classical solution (7)
by using the following relations

sin( 3
8λα

2t) = 3
8λα

2t + h(0) (8a)

cos( 3
8λα

2t) = 1+ h(0). (8b)

In the above equations we have limited ourselves up to the linear power ofλ by neglecting
the terms containing higher powersh(0) of the same. Thus equation (7) takes the form

x(t) = α cos(t + 3
8λα

2t + β)+ λα3[ 1
32 cos(3t + 3β)+ 3

8 cos(t + 3β)

− 1
8 cos(t − 3β)+ 1

16 cos(t + β)− 1
16 cos(t − β)] + . (9)

The first term shows the usual frequency shift of3
8λα

2. The same approach is adopted for
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Figure 1. Relative contributions of the coefficients of curves: (a) X3(0); (b) X2(0)Ẋ(0) +
X(0)Ẋ(0)X(0)+ Ẋ(0)X2(0); (c) Ẋ2(0)X(0)+ Ẋ(0)X(0)Ẋ(0)+X(0)Ẋ2(0), and (d) Ẋ3(0) to
nonlinear effect as a function ofωt .

equation (6) to have the following relation

X(t) = 1

2 cos( 3
8λt)

{[
X(0) cos

(
t + 3λt

4
H0

)]
+
[

cos

(
t + 3λt

4
H0

)
X(0)

]
×
[
Ẋ(0) sin

(
t + 3λt

4
H0

)]
+
[

sin

(
t + 3λt

4
H0

)
Ẋ(0)

]
+3λ

64
[X(0)Ẋ2(0)+ Ẋ2(0)X(0)] × (cost − cos 3t)

+3λ

64
[Ẋ(0)X2(0)+X2(0)Ẋ(0)] × (sin 3t − 7 sint)

− λ
32
(sin 3t + 9 sint)Ẋ3(0)− λ

32
(cost − cos 3t)X3(0)

}
(10)

whereω = 1 andH0 = 1
2(X

2(0) + Ẋ2(0)) is the Hamiltonian of the harmonic oscillator.
The relations sinα = α and cosα = 1 for smallα have been used. We obtain the solution
of Bender and Bettencourt [5] if we drop the last three rows from our solution (10). The
appearance of the third harmonic term is also explicit in (10). The quantum anharmonic
oscillator has also been studied by using an integral approach [6]. Equivalent nonlinear
operator integral equations were framed out of the differential form of the position and
momentum operators. Finally an iterative approach was used to obtain the solution of the
operator integral equation [6].

We conclude by noting that there are several examples where we come across a
Hamiltonian of a quartic anharmonic oscillator. These include the interaction of light with
nonabsorbing (lossless) inversion symmetric media if the third-order susceptibilities are



Letter to the Editor L505

taken into account. The order of anharmonicities will increase as the orders of nonlinear
susceptibilities increases. It is well known that the interaction of light with nonlinear media
leads to the higher harmonic generation [7]. The orders of the generated higher harmonics
are compatible with the order of the nonlinear susceptibilities. Clearly, the third harmonic
term present in our solution tends to reflect this physical fact even in a model calculation.

Solution (6) which is obtained by using the Taylor series also has a drawback. The
presence of the secular term proportional toωt sinωt rises rapidly with increasingωt .
Hence, the solution is nonuniform under the series expansion. Such a drawback is removed
by using renormalization techniques.
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